Schema APIs
            deeplake.Schema
    The schema of a deeplake.Dataset.
            deeplake.SchemaView
    A read-only view of a deeplake.Dataset deeplake.Schema.
            deeplake.ColumnDefinition
    
            deeplake.ColumnDefinitionView
    A read-only view of a deeplake.ColumnDefinition
Default Schemas
            COCOImages
COCOImages(
    embedding_size: int,
    quantize: bool = False,
    objects: bool = True,
    keypoints: bool = False,
    stuffs: bool = False,
) -> SchemaTemplate
A schema for storing COCO-based image data.
- id (uint64)
- image (jpg image)
- url (text)
- year (uint8)
- version (text)
- description (text)
- contributor (text)
- date_created (uint64)
- date_captured (uint64)
- embedding (embedding)
- license (text)
- is_crowd (bool)
If objects is true, the following fields are added:
    - objects_bbox (bounding box)
    - objects_classes (segment mask)
If keypoints is true, the following fields are added:
    - keypoints_bbox (bounding box)
    - keypoints_classes (segment mask)
    - keypoints (2-dimensional array of uint32)
    - keypoints_skeleton (2-dimensional array of uint16)
if stuffs is true, the following fields are added:
    - stuffs_bbox (bounding boxes)
    - stuffs_classes (segment mask)
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
                embedding_size
             | 
            
                  int
             | 
            
               Size of the embeddings  | 
            required | 
                quantize
             | 
            
                  bool
             | 
            
               If true, quantize the embeddings to slightly decrease accuracy while greatly increasing query speed  | 
            
                  False
             | 
          
Examples:
            SchemaTemplate
    A template that can be used for creating a new dataset with deeplake.create
            __init__
    Constructs a new SchemaTemplate from the given dict
            add
add(
    name: str, dtype: DataType | str | Type
) -> SchemaTemplate
Adds a new column to the template
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
                name
             | 
            
                  str
             | 
            
               The column name  | 
            required | 
                dtype
             | 
            
                  DataType | str | Type
             | 
            
               The column data type  | 
            required | 
            remove
remove(name: str) -> SchemaTemplate
Removes a column from the template
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
                name
             | 
            
                  str
             | 
            
               The column name  | 
            required | 
            rename
rename(old_name: str, new_name: str) -> SchemaTemplate
Renames a column in the template.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
                old_name
             | 
            
                  str
             | 
            
               Existing column name  | 
            required | 
                new_name
             | 
            
                  str
             | 
            
               New column name  | 
            required | 
            TextEmbeddings
TextEmbeddings(
    embedding_size: int, quantize: bool = False
) -> SchemaTemplate
A schema for storing embedded text from documents.
- id (uint64)
 - chunk_index (uint16) Position of the text_chunk within the document
 - document_id (uint64) Unique identifier for the document the embedding came from
 - date_created (uint64) Timestamp the document was read
 - text_chunk (text) The text of the shard
 - embedding (dtype=float32, size=embedding_size) The embedding of the text
 
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
                embedding_size
             | 
            
                  int
             | 
            
               Size of the embeddings  | 
            required | 
                quantize
             | 
            
                  bool
             | 
            
               If true, quantize the embeddings to slightly decrease accuracy while greatly increasing query speed  | 
            
                  False
             | 
          
Examples:
Storage Formats
            deeplake.formats.DataFormat
    Base class for all datafile formats.
            deeplake.formats.Chunk
Chunk(
    sample_compression: str | None = None,
    chunk_compression: str | None = None,
) -> DataFormat
Configures a "chunk" datafile format
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
                sample_compression
             | 
            
                  str
             | 
            
               How to compress individual values within the datafile  | 
            
                  None
             | 
          
                chunk_compression
             | 
            
                  str
             | 
            
               How to compress the datafile as a whole  | 
            
                  None
             |