Skip to content

🌊 Deep Lake: Multi-Modal AI Database

Deep Lake is a database specifically designed for machine learning and AI applications, offering efficient data management, vector search capabilities, and seamless integration with popular ML frameworks.

Key Features

🔍 Vector Search & Semantic Operations

  • High-performance similarity search for embeddings
  • BM25-based semantic text search
  • Support for building RAG applications
  • Efficient indexing strategies for large-scale search

🚀 Optimized for Machine Learning

  • Native integration with PyTorch and TensorFlow
  • Efficient batch processing for training
  • Built-in support for common ML data types (images, embeddings, tensors)
  • Automatic data streaming with smart caching

☁️ Cloud-Native Architecture

  • Native support for major cloud providers:
    • Amazon S3
    • Google Cloud Storage
    • Azure Blob Storage
  • Cost-efficient data management
  • Data versioning and lineage tracking

Quick Installation

pip install deeplake

Basic Usage

import deeplake

# Create a dataset
ds = deeplake.create("s3://my-bucket/dataset")  # or local path

# Add data columns
ds.add_column("images", deeplake.types.Image())
ds.add_column("embeddings", deeplake.types.Embedding(768))
ds.add_column("labels", deeplake.types.Text())

# Add data
ds.append([{
    "images": image_array,
    "embeddings": embedding_vector,
    "labels": "cat"
}])

# Vector similarity search
text_vector = ','.join(str(x) for x in search_vector)
results = ds.query(f"""
    SELECT *
    ORDER BY COSINE_SIMILARITY(embeddings, ARRAY[{text_vector}]) DESC
    LIMIT 100
""")

Common Use Cases

Deep Learning Training

# PyTorch integration
from torch.utils.data import DataLoader

loader = DataLoader(ds.pytorch(), batch_size=32, shuffle=True)
for batch in loader:
    images = batch["images"]
    labels = batch["labels"]
    # training code...

RAG Applications

ds = deeplake.create("s3://my-bucket/dataset")  # or local path
# Store text and embeddings
ds.add_column("text", deeplake.types.Text(index_type=deeplake.types.BM25))
ds.add_column("embeddings", deeplake.types.Embedding(1536))

# Semantic search
results = ds.query("""
    SELECT text
    ORDER BY BM25_SIMILARITY(text, 'machine learning') DESC
    LIMIT 10
""")

Computer Vision

# Store images and annotations
ds = deeplake.create("s3://my-bucket/dataset")  # or local path
ds.add_column("images", deeplake.types.Image(sample_compression="jpeg"))
ds.add_column("boxes", deeplake.types.BoundingBox())
ds.add_column("masks", deeplake.types.SegmentMask(sample_compression='lz4'))

# Add data
ds.append({
    "images": imgs,
    "boxes": bboxes,
    "masks": smasks
})

Next Steps

Resources

Why Deep Lake?

  • Performance: Optimized for ML workloads with efficient data streaming
  • Scalability: Handle billions of samples directly from the cloud
  • Flexibility: Support for all major ML frameworks and cloud providers
  • Cost-Efficiency: Smart storage management and compression
  • Developer Experience: Simple, intuitive API with comprehensive features