DataLoader
PyTorch and TensorFlow DataLoaders
Tip
To create a standard PyTorch or TensorFlow DataLoader from a dataset, use deeplake.DatasetView.pytorch or deeplake.DatasetView.tensorflow which adapt a dataset or query result to the PyTorch or TensorFlow DataLoader API.
Data Streaming
deeplake.Prefetcher
The Prefetcher can be used to more efficiently stream large amounts of data from a DeepLake dataset, such as to the DataLoader then to the training framework.
Examples:
>>> ds = deeplake.open("al://my_org/dataset")
>>> fetcher = deeplake.Prefetcher(view, batch_size=2000)
>>> for batch in dl:
>>> process_batch(batch["images"])
__init__
__init__(
dataset: DatasetView,
batch_size: int = 1,
drop_last: bool = False,
) -> None
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dataset
|
DatasetView
|
The deeplake.DatasetView to stream from |
required |
batch_size
|
int
|
The numer of rows to return in each iteration |
1
|
drop_last
|
bool
|
If true, do not return a non-full final batch |
False
|